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MATHEMATICAL MODELING OF T H E  HEAT-TRANSFER 

PROCESS AND SOLID PARTICLES IN A FLUIDIZED BED 

V. A.  B o r o d u l y a ,  Y u .  S. T e p l i t s k i i ,  
Y u .  G. E p a n o v ,  Y u .  E.  L i v s h i t s ,  
a n d  I .  I .  Y a n o v i c h  

UDC 66.096.5 

The authors  formula te  a two-concen t ra t ion  model of pa r t i c l e  mixing in a fluidized bed, account-  
ing for  pa r t i c le  iner t ia .  

In spite of the impor tance  of knowing the laws for  t r a n s f e r  of beat  and pa r t i c l e  mass  in a 'fluidized bed, 
this m a t t e r  has not yet been sa t i s f ac to r i ly  resolved.  Exis t ing methods account for  some of the r ea l  t r anspor t  
p r o p e r t i e s  of the sys tem,  but there  is no model  that de sc r ibe s  at leas t  the bas ic  fea tures  of the bed and includes 
the p r e sen t  methods of desc r ib ing  the mixing phenomenon as spec ia l  cases .  F o r  example ,  the s imples t  diffusion 
model [1] examines  the pa r t i c l e  t r a n s p o r t  p r o c e s s  as a pure ly  r andom diffusion one. The c i rcula t ion mixing 
method [2] s ingles out convective par t i c le  t r a n s p o r t  as the bas ic  m e c h a n i s m  (upwards in the t r a i l s  of the a s -  
cending gas bubbles, and downwards in the  remain ing  emuls ion  phase),  and complete ly  ignores  the p re sence  of 
diffusion t r a n s p o r t  in the continuous bed phase.  The one-concent ra t ion  equation of convective diffusion fo rmu-  
la ted  in [3] takes  account  of both diffusion and c i rcula t ion t r anspor t ,  and he re  to calculate the la t te r  we need 
detai led knowledge of the pa r t i c l e  ve loci ty  d is t r ibut ion over  t ime  and s y s t e m  volume. This  makes  the model 
e x t r e m e l y  awkward for  p r ac t i ca l  use. The c i rcula t ion-di f fus ion two-concent ra t ion  mixing method proposed 
in [4] combines  the good quali t ies of the diffusion and the c i rcula t ion models.  But even it  is not f ree  f rom the 
common defect  genera l ly  inherent  in the diffusion pa rabo l i c  equations,  that it does not take account of the iner t ia  
of the solid phase.  As is well  known [5], this leads  to the paradox of infinitely large instantaneous veloci ty of 
pa r t i c le  motion. The re fo re ,  in [5] pa r t i c l e  mixing was desc r ibed  by the hyperbol ic  diffusion equations which, 
however,  do not account for  the c i rcu la t ion  mixing  mechanism.  

Thus, ne i ther  of the above models  includes al l  the bas ic  fea tures  of the mixing p roces s ,  and the re fo re  
does not sa t i s fac to r i ly  desc r ibe  the ac tual  p r o c e s s  over  a wide range of va r ia t ion  of the exper imenta l  conditions. 

In this pape r  the authors have t r i ed  to const ruct  quite a un ive r sa l  model  of the p roces s ,  to desc r ibe  both 
diffusion and c i rcula t ion  t r anspor t ,  and the iner t ia  of the solid phase.  

Th ree  bas i c  mechan i sms  have been identified for  mixing of pa r t i c l e s  and bubbles in fluidized beds (Fig. 1): 

a) c i rcula t ion (convective) t r a n s p o r t  of pa r t i c l e s  ve r t i ca l ly ;  

b) turbulent  diffusion of pa r t i c l e s  at finite speed in the descending dense phase;  

c) hor izonta l  exchange of pa r t i c l e s  between t r a i l s  of gas bubbles and the descending dense phase. 

The continuity equations for  flux of labeled pa r t i c l e s  have the f o r m  

A Oc, + A ~wlc---------!--t = [~ (c~ - -  c,), 
& Ox~ 

A. V. Lykov Insti tute of Heat  and Mass T rans fe r ,  Academy of Sciences of the Be loruss ian  SSR, Minsk. 
T rans l a t ed  f r o m  Inzhenerno-F iz iehesk i i  Zhurnal,  Vol. 42, No. 2, pp. 251-259, Februa ry ,  1982. Original  
a r t ic le  submit ted F e b r u a r y  2, 1981. 
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B O--c!- + B Ovlc~ -- ~(c~--c~)L 
a-~ axl 

(1) 

Here  and below a repeated  subsc r ip t  indicates  summation.  Assuming,  as in [4], that  

and ca r ry ing  out a s tandard  t i m e - a v e r a g e  operation,  we obtain 

ac~ ac~ o < w[ c[ > 
A ~ + A t t t  - -  : - -  A + ~ (C., - -  Ci). 

Ox~ Ox~ (2) 

B OC2 Bu~ ac., =~(Ci--C2). 
O~ ax~ 

We note that  the Reynolds condition is sa t is f ied he re  (see [4, 5]). 

In o rde r  to br ing s y s t e m  (2) to the f o r m  of the diffusion equations and a lso  to account for  pa r t i c le  iner t ia ,  
we introduce the following analog of the Maxwel l -Ca t t an io t  relat ion: 

< w[ c~ } = - - D i i  axi \ a,~ ax t 1 '  

where 7"  is the re laxat ion  t ime of the concentrat ion field c 1. T h e a d d i t i o n a l t e r m  .Z.~du~O< W~ c I >/Ox~ (compared 
withthe flux fac tor  (w~c; } used previous ly ,  see, e.g., [5]) in Eq. (3) accounts for  t h e p r e s e n c e  of convective t r a n s -  
por t  (with veloci ty ul) of the labeled m i x t u r e  in the space of the descending continuous phase.  

Combining Eqs. (2) and (3) we obtain 

A OC~ ac~ a2c, a2c~ ( ~*u2 ) O2C~ 
az + u  ax--7 -+-Ax* - - + 2 u z *  - A D i : - - - -  8i161i ~ - ~ - ~ ( C 2 - - C 1 )  X 

a~ 2 a~ax, A Ox~ax~ 

•  0 _k~:,u, 0 _ ~  ) ,  B ac2 OC~ 
�9 - - - - u . . .  ~ =[~(Q--C2). 

a~ a~ Ox~ 

(4) 

The equations of s y s t e m  (4) a r e  a ma themat ica l  model  for  pa r t i c le  mixing in nonuniform fluidized beds. 
Taking account of the large di f ference in the volume heat  capaci t ies  of the gas and the pa r t i c l e s  (pfCf:PsC s 
10-3), we may assume  that al l  the heat in the s y s t e m  is t r a n s f e r r e d  by the moving pa r t i c l e s .  Thus, Eq. (4) 
a lso  desc r ibes  the bas ic  laws for  in te rna l  heat  t r a n s f e r  in the fluidized bed (in this case  one must  substi tute:  
C1--* tl; C2~t2; Dij--~aij; fl ~-c~). One can a lso  postulate  that  the condition Dij ~-aij holds in nonuniform fluidized 
beds. 

F o r  T* =0 s y s t e m  (4) desc r ibes  the c i rcula t ion-di f fus ion mixing model  [4], and for  T* =0 and Dij =0 it 
de sc r ibe s  the Van Deemter  c i rcula t ion model [2]. Putting T* =0, u 1 = u 2 =0,/3 = ~ (C 1 = C 2 =C) in Eq. (4), we 
obtain the v e r y  s imple  diffusion model [1]. 

We now analyze the behavior  of Eq. (4) at large t ime.  Following the method of [2] we p e r f o r m  a Laplace 
t r an s fo rma t ion  of Eq. (4) for  the case C1(0 , xi)=C2(0, x i )=0 ;0Cl (0 ,  xi)/0~- =0: 

- -  a c ~  
ApC, § u -Ox~- ~ AT*P2~ + 2 u~*p aC, 

�9 c)xi 

( ) T*u 2 a2Ci 
~- ADiy A 6iL5,~ , ax, axj 

BpC~ - -  u 

~-~(c-~--~) (1 +~*p+z*u, 0-~-~ )' 

ac2 
(5) 

:~Stricfly speaking, Eq. (1) is valid for  the case when a sma l l  phys ica l  volume contains many bubbles. However,  
to a f i r s t  approximat ion  one can cons i de r  such a volume to be the so -ca l l ed  e l e m e n t a r y  cell  of the bed - one 
bubble and the emuls ion  phase  surrounding it. This  is valid for  s tagnated l ayers ,  although this approach  is 
widely used, in fact, even for  f ree  fluidized s y s t e m s  in wri t ing the equations for  the va r ious  two-phase  models  
of the fluidized bed (see, e.g.,  [1, 2]). 
tThe influence of hor izonta l  pa r t i c le  t r a n s f e r  devices  at the top of the bed and in the  gas d is t r ibut ion device,  
which involves local detai ls ,  can be accounted for  in the veloci ty  fluctuation w' i. 
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Fig. 1. Scheme of the two-  
phase model of mixing of 
par t i c les  and bubbles in a 
fluidized bed.  
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Fig. 2. Comparison of the calculated (1-4) 
and the exper imenta l  (5) t empera tu re  curves.  
The s taggered beam bundle has Sv• S h =60 • 
60 mm;  x2/ /=0.85;  uf=131 cm/sec ;  d =0.63 
mm; t0=15~ tc=65~ diffusion model: 1) 
ah=24.8 cm2/sec; 2) 14.2; 3) 7.1 (fi* =0.0068 
1/sec) ;  diffusion model with finite par t ic le  
velocity:  4) a h =12.8 cm2/sec; T* =6.9 sec 
(/3* =0.0068 1/sec) .  

~'c~', l,-- ~ [ x_ ,  . - ~  ! / :  / / . [  
�9 • w; r I ~ o o 7 1 i /  Y /  ~ ' . ~  

�9 • / J  I / _ ~  i 

S' Z ' I I o,/. ' ! / / / C t  , ~ - "  / , : I 

[ "/" ' ~ i / "  

fO 2:2 40 50 80/5'0 200 /0 20 #0 G,9 80 f?? ~-ffo 

Fig. 3. Exper imenta l  data on veloci t ies  w f - u l  and v: a) glass beads (d =1.75 
mm); b) quartz  sand (d=0.63 mm); 1, 2) f ree  layer ;  3, 4) SvX Sh=60•  60 m m ( ~ a  = 
0.80); 5, 6) S v •  mm (Ca=0.65); 7, 8) S v •  60 mm (Ca=0.80). 
1, 3, 5, 7) (w f - u l ) ;  2, 4, 6, 8) v; 3-6) s taggered bundle; 7, 8) co r r i d o r  type; (wf-u~), 
v in c m / s e c ;  t, ~ 7, sec; u f / e a -u 0 ,  c m / s e c .  

F r o m  the second equation of Eq. (5) we express  CI in t e r m s  of C2 and aC2/~xl ,  and substitute this into the f i r s t  
equation of the sys t em (5). Retaining only t e r m s  l inear  in p (as �9 -~ % p--" 0 [6]), we obtain 

i ) - ( ) 
- -  T*U 2 U a3C2 u2 02C~ ADij 8118it" . (6) (A + B) pC2 -- ADi i + - - 7  611611 OxiOx.i A [5 Ox~OxiOx~ 

The equations for  Ci and for  the t r a n s f o r m  of the mean concentrat ion C = 
AC--~ + B ~  

A + B  are  identical  to Eq. (6). 

Taking into account that the d i rec t ion  of the gas s t r e a m  coincides with the axis 0x 1 we can regard  the axes 
0xl; 0x2; 0x 3 as the pr incipal  axes of the t enso r  Dij [5]. Assuming this and going back to the original  C, we 
r ep re sen t  Eq. (6) in the fo rm  

Thus, in general ,  even for  large 7, sy s t em (4) does not t r a n s f o r m  into the ve ry  simple diffusion equation, 
but goes back to  a t h i r d - o r d e r  equation of the type of Eq. (7). Equation (7) reduces  to a v e ry  simple parabol ic  
diffusion equation 
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O C [ A D , ~  uZ ]o2cc_ AD~ OzC A D ~ a O a C  (8) 
Or -- A ~ - B  ~- [5(A H- B) "~--~ -~ A H- B Ox~ -~ A-{- B Ox~ 

with u / f l H  << 1.T The express ion in the square brackets  in Eq. (8) is that general ly used in the [1] for the ef-  
fective coefficient of ver t ica l  diffusion of par t ic les  K.~ One of the t e rms  D v =ADll/(A +B) is the coefficient of 
ver t ica l  turbulent diffusion of par t ic les ;  the second t e r m  Ka =u2/fi (A + B) is the coefficient of axial "Taylor"  
diffusion, found, as is known [8], in sys tems with a uniform field of axial velocit ies (ul0 u 2) and t r ans f e r  of 
mater ia l  in the radial  direction (fi). In c i rcu la r  and square beds it is permiss ib le  to take D22 = D33. The ex-  
press ion AD22/(A + B) = D h is the effective coefficient of horizontal  diffusion of par t ic les .  

It can be seen f rom Eq. (7) that the s teady-s ta te  distr ibution of concentrat ions can be calculated f rom one 
of the two equations: 

1) the ver t ica l  mixing: 
d2C [ ADi~ r'u2 ] u d 3C 

K dx~ -- A-~-B A (A + B) ~ dx~ ' (9) 

2) the horizontal  mixing: 
d2C 
d--T = o, (1o) 

where the ver t ica l  concentration profile is determined,  apar t  f rom coefficients of the third o rder  of (9), like 
the diffusion flux, and can differ appreciably f rom lineari ty (horizontal mixing). 

We now investigate the behavior of sys t em (4) as the intensity of heat t r ans f e r  between the phases var ies .  

a) fl =0, phases A and B are  isolated. For  the horizontal  mixing case (C 1 = Cl(t, x2); C 2 =C2(t , x2)) Eq. (4) 
has the form 

_ _  02Ci 0C2 OCi -}- r* O2Cl - - D 2 . - - "  - - - = 0 .  (II) 
Or Or~ Ox~ ' at 

The f irs t  equation in (11) descr ibes  diffusion with finite velocity v 0 = 4 D22/~'* in the positive and negative d i r ec -  
tions of the 0x 2 axis. For  ver t ica l  mixing (C 1 =C 1 (t, xl); C 2 =C2(t , x l ) ) f r o m  Eq. (4)we obtain 

02C~ 02Ct aC~ 0C2 (12) OC, OCi a2---CL + 2 u(~* - -  (Dti - -  r*u~) " " u2 -- O. 
~ + u~ Ox~ + "~* OT 2 OrOx~ Ox~ ' O'~ ax~ 

In the coordinate sys tem moving relative to the 0x I axis with velocity ul Eq. (12) takes the form (x~ = x l - u l T )  

OC, -q- "~* O2Ci -- D~t 02C~ (12a) 
ar Or z Ox[ ~ " 

Therefore,  the f i rs t  equation of (12) descr ibes  convective diffusion with finite velocity w0 f =u 1 + Dd-~11/~-* in the 
positive 0x 1 axis direction; and with wf  = - u  1 +• Dll/T* in the negative direction. 

b) p =0% the phases A and t3 are  physical ly indistinguishable (C 1 = C 2 =C and the sys t em is single-phase).  
Expressing C 1 f rom the second equation of (4) and substituting it into the f i rs t  equation of (4) for  the ease fl = 0% 
we obtain 

OC_~ -k ~. __O2C __ __AD2~ O2C (13) 
O'~ Ox ~ A + B Ox~ 

for the horizontal  mixing, and 
82C AD,, 82C 8__C__C + r* O2C + ulT* . . . . .  (14) 

Or 8~ 2 8rOx, A + B Ox~ 

TThis condition is fulfilled at least  in high stagnated beds. 
~The quantity K = D v +u2/fi (A + B) is not the coefficient of turbulent diffusion in the s t r ic t  sense, and is therefore  
usually called the coefficient of ver t ica l  d ispers ion [7]. 
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for the ver t ica l  mixing. The velocit ies and reverse  waves determined by Eq. (13) are :  v~ = ] / /  AD~.~ _ (A + B) ~* 

/ .  
A + B v0 (v0is the wave velocity for  fl =0). The diffusion coefficient is equal to the effective horizontal  

diffusion coefficient Dh =AD22/(A + B). 

The charac te r i s t i cs  of Eq. (14) [9] have the form: 

[ / . , ,  1 , ]  
x i - -  (A + B)~* + --~- u~ -+--~- u~ ~=consh ,  (15) 

xl + (A + B)'~* -" 4 uI - - - 2  - ui *=const2, 

and therefore ,  the velocity of the forward wave determined by Eq. (14) is wf = ]/AD~/(A + B) **q-u~74+U~/2 
and that of the r eve r se  wave is wr = V~AD~/(A+B)**+u~/4--u/2. It is c lear  that the propagation veloeity of 
the forward and reve r se  diffusion wave fronts horizontal ly  for  a rb i t r a ry  fi is v = q? (/3)v0, where ~/A/(A + B ) -  
.~(fi)-< 1; q)(0)=1; q)(~) =~/A/(A +B). The forward wave velocity w f in the descending continuous phase for 
a rb i t r a ry  fi is wf=r  ~ )  w0 f, where [ ~ : / ( A +  B) ~*+ u2/4 + ud2]/(ut + ~ ' " ~ *  (B)~I; r =1; $(co) =wf/wfo" 
The reve r se  wave velocity w r in this same phase var ies  in the range w[  to w r with var ia t ion of/3 f rom 0 to c~ 

The par t ic le  veloci ty in the bubble t ra i l  phase (the r e v e r s e  wave velocity) is evidently equal to u2, and thus, in 
the sys t em with a rb i t r a ry  fl there  are  one forward wave and two r eve r se  waves .?  In actual fluidized sys tems  
A/(A +B) var ies  only ve ry  slightly: 0.8 -< A/(A + B) < 1. It can easi ly be seen that here  ~ (fi) var ies  in the range 
0.9 < ~ ( 3 )  -< 1. 

The function [] ADII/(A +B)T* +u~/4 +ui/2]/(u i +~/DIi/T* ) depends weakly on ul, Dil/T*, and A/(A +B), 
and herer varies in the range: 0.77 < r -< i. For the ratio wf/v we obtain 

wf ~ /  "c* /- Djl 
V ~D~-~ + u~ - D  (16) 

~) 22 

with an e r r o r  not exceeding 16%. F r o m  Eq. (16), knowing ~-*, D22 , ui, and w f / v  we can evaluate Dll. The rat io 
between the coefficients Dli and D22 can be found f rom the following approximate equality: 

D~ _ Dv ~ ( w f - - u '  , (16a) 
D~2 D h v 

which follows from Eq. (16). 

An experimental determination of w f and v was conducted in a rectangular facility of section 40 • 25 cm. 
As disperse materials we used glass beads (d=1.75 mm; u0=63 cm/sec) and quartz sand (d=0.63 mm; u0=20 
era/see). In determining w f we used the method of an instantaneous planar heat source [I0]. For a detailed 
description of the tests see [II]. The quantity w f was found fromthe relation 

w f = lX/Td, (17) 

where t x is the distance f rom the top of the bed (the place where the hot par t ic les  are  introduced) to the point 
where the bed tempera tu re  changes; and ~'d is the delay t ime of the response function (Fig. 2). An analogous 
method was used to determine v under hor izontal  mixing conditions. Here a heat pulse of finite width was created 
(10=6 cm) by the method of [12] on the left-hand wall of the equipment. The velocity v was determined from: 

v = (lv --/0)/Td. (18) 

The measurement  thermocouple was located at a distance ly f rom the left-hand wall of the column. 

In the work we studied both free beds and beds stagnated by means of horizontal  tube bundles. Two types 
of s taggered and s t ra ight- l ine  bundles were used: S v x S h = 45 • 45 mm, 60 x 60 mm and S v x S h = 60 x 60 mm. 

t F o r  w r <0 in the sys t em there are  two forward waves (w f, - w  r) and one r eve r se  wave (-u2). It is evident that 
because of interphase t r ans f e r  these three waves will be present  in both phases.  
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Pre l imina ry  tes ts  showed that w f and v do not depend on H0, and therefore  the basic  ser ies  of experiments  was 
car r ied  out in beds with H 0 =25-27 cm. The results  obtained are  shown in Fig. 3, f rom which, taking account 
of Eq. (16a) (the values of ut were taken f rom [11]), it can be seen that in the free beds of both the d isperse  
mater ia ls  DtI is pract ical ly  equal to D22. An analogous situation occurs  in the stagnated beds of glass beads in 
the s traight  line and s taggered bundles (Sv• Sh= 45 • 45ram) (Fig. 3a). Inthe quartz sandbeds DI1 = (1-4)D22 in all 
the bundles. Here we can see a c lear  tendency for Dil and D22 to become close with increase  in the filtration 
velocity (Fig. 3b). It is evident that the rat io of I)11 and ]322 is great ly  influenced by p rocesses  of coalescence of 
bubbles and ejection of part icles  in the horizontal  direct ion at the top of the bed and at the gas distr ibution 
device. As can be seen f rom Fig. 3, the contributions of these p rocesses  to the intensity of part icle mixing in 
free beds is roughly the same, and they have a tendency to become close with increase  of fil tration velocity in 
stagnated beds. 

Figure 2 shows a typical resul t  of process ing  the experimental  curves (5) according to the var ious  models. 
Brokenl ines  1-3 showthe sys t em response functions to a heat pulse for the case of horizontal  mixing of heated 
part icles,  calculated according to the solution [13] of the parabolic heat-conduction equation with boundary con- 
ditions corresponding to those created experimental ly:  

Ot Ozt 
Or % ax~ 

tc, O ~ x ~ < l o .  
t(O, x 2 ) :  to, lo < x2 ~'~ 1 , 

- -  [~+ ( t  - -  t o ) ,  

Ot 
--0,  x 2 :  O; l, 

Ox2 

(19) 

where fi* is determined f rom the test  response function f rom regu la r  regime conditions [6] with ~" > Tma x. 
This pa ramete r  descr ibes  the heat flux f rom the bed to the tube bundle and to the a i r  being filtered. It can be 
seen that the theoret ical  curves do not descr ibe  the actual hea t - t r ans fe r  process  to the bed over  the whole 
range of variat ion of t ime and, of course,  do not contain Zd. The model constructed above allows this to be 
done. Using the analogy noted ea r l i e r  between t ranspor t  of labeled par t ic les  and heat in nonuniform fluidized 
beds, f rom sys t em (4) we can obtain equations descr ibing the horizontal  internal  heat t r ans fe r  in the sys tem:  

A Ott + A ~  "<': 02q -- Aa22 02t' 
-~-~-- Or 2 ~ + [c, (t2 - -  t,) - -  A3* (t, - -  to)] • 

( 0 ) Or2 = a ( t _ _ t 2 ) _ B ~ , ( t 2 _ t o ) .  (20) 
• l + x *  Or ; B Or 

It was shown in [4] that the two- tempera ture  sys tem (20) with ~'* =0; fl* = 0; aI2/a~ ~ 10 converts  to the one- 
t empera ture  equation (19) (for fi*=O) with ah=Aa22/(A +B). Therefore,  for  al2/a~ ~ 10 (this usually holds in 
c i rcu la r  facili t ies [4]), Eq. (20) wiI1 take the fo rm (eliminating one of the t empera tu res  f rom Eq. (20) and putting 
t I =t 2 =t when ~ co) 

O--~-Ot Or ---T-O2t ah ~02t ( O )  + r *  = Ox-----~ - -  ~* (t ]- to) 1 + r* . (21) 

Allowing for  the measured values fl* =0.002-0.009 1 / see  and T* =1-5 sec, Eq. (21) is simplified, and together  
with the required boundary conditions takes the fo rm 

Ot OZt Ozt . 
o--U + r* o~2 = ar ~ - -  ~ ( t - -  to); 

i = - - %  O__~t _ r ,  O] - 0 ,  x~ = O, l;" 
ax~ Or 

f,tc, O ~ x ~ < l o .  Ot(O, x2) _ O. (22) 
t(o, x~)= (to, I0<x2~<I  ' o~ 

System (22) was used for numerica l  calculations of the tempera ture  profiles, and here  it was replaced by the 
equivalent sys tem of equations 

a t  _ O] 6*(t--to); ] = - - a  h O._~t __,v* 0] (23) 
Ox Ox~ Ox 2 O~ 

and the boundary conditions 
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4 ,  O ~ x . , <  lo. 
t (O,x~)=  4 ,  / o < X ~ l '  ] (O,x~)=O; 

] (~, 0) = i (~, 0 - 0. 

Equations (23) were  approx imated  by the fully conserva t ive  di f ference scheme [14] which was implemented  
numer ica l ly  by a marching  method [15] on a BESM-6 computer  (the s tep s izes  in the d imens ion less  coordinate 
x2// and in d imens ion less  t ime  ah~-//2 were  0.001 and 0.00001, respect ive ly) .  The response  function, calculated 
f rom Eq. (23), is a lso  shown in Fig. 2 (4), f r o m  which it can c lea r ly  be seen that  curve 4 desc r ibes  the observed 
dependence over  all  the range of va r i a t ion  of ~" signif icantly be t t e r  than do the functions 1-3 obtained f r o m  Eq. 
(19). This p roves  the impor tance  of allowing for  the iner t i a  of the solid pa r t i c les  in descr ib ing  t r a n s f e r  of 
pa r t i c les  and heat  over  the volume of a fluidized bed. 

NOTATION 

aii, tensor for the bed diffusivity coefficients; a h =Aa22 : (A +B), effective coefficient of horizontal dif- 
fusivity of the bed; A = 1 - gv- ~vgv, fractional volume ofbedoccupiedbythe descending continuum phase; B = ~vgv, 
fractional volume of the bed occupied by bubble trails; Cs, Cf, heat capacity of the solid particles and the gas; 
el, c2, mass of the labeled solid material arriving in unit vofume of the emulsion phase in the descending con- 

? 

tinuum phase and in the bubble wakes, respectively; e~, c2, fluctuations in c i and c2; C I and C2, mean values of 
e i and c2; d, particle diameter; Dij, tensor introduced in Eq. (3); Dh=AD22/(A +B), effective coefficient of 

ADii  u s 
hor izonta l  par t ic le  diffusion; Ho, H, ini t ial  and ambient  bed height; j =Q/pCs;  i ( = ~ - ~ - §  ~ (A~-B~) ' coefficient  of 

ve r t i c a l  pa r t i c le  d i spers ion ;  p, Laplace p a r a m e t e r ;  Q, heat  flux density;  4, l, width of the heated ch amb e r  and 
of the equipment,  r e spec t ive ly ;  Sv, Sh, ve r t i c a l  and hor izonta l  pitch of the tubes;  t i and t2, t e m p e r a t u r e  of the 
solid pa r t i c l e s  in the emuls ion  phase  and in the bubble t r a i l s ,  r e spec t ive ly ;  t = (At~ +Bte)/(A +B); to, tc, ini t ial  
bed t e m p e r a t u r e  and heated cham be r  t e m p e r a t u r e ;  ul, u2, velocity of the descending emuls ion  phase  and of the 
bubble t r a i l s ,  r e spec t ive ly ;  Au i =Bu 2 =u, c i rcula t ion  veloci ty  of the pa r t i c les  r e f e r r e d  to the total  sect ion of the 
equipment;  uf, f i l t ra t ion veloci ty;  Uo, ve loc i ty  at the s t a r t  of fluidization; wi, vi, ve loci t ies  of the pa r t i c l e s  in 
the emuls ion  phase  and in the bubble t r a i l s ;  w[, f luctuations in the quantity wi; xl, x 2, x 3, ve r t i c a l  and hor izonta l  
coordinates ;  C~v, f rac t ional  volume of the t r a i l  ( r e f e r r ed  to the gas bubble volume);  a * ,  coefficient of heat 
t r a n s f e r  between the descending continuum phase  and the bubble t ra i l s ,  r e fe renced  to unit volume of bed; a = 
~ * / P C s ;  fi, volume of solid pa r t i c les  and gas between them (per unit t ime and unit bed volume) t r a n s f e r r e d  
between the descending continuum phase and the solid particles in the bubble trails; /~*, coefficient introduced 
into Eq. (19); 5ij , Kronecker delta; gv, concentration of bubbles in the bed; ~a, porosity of the adapter; pf, Ps, 
densities of the gas and the particles; p, density of the fluidized bed; T, time; ~*, relaxation time introduced 
into Eq. (3); ~d, delay time; Tmax, time to reach the temperature maximum. 
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THERMODYNAMIC ANALYSIS OF MASS-TRANSFER 

FORCES IN THE COURSE OF CRYSTALLIZATION 

FROM SOLUTIONS 

V. V. Kafarov, I. N. Dorokhov, 
and ]~. M. Kol'tsova 

M O T I V E  

UDC 532.529.5:66.065.5 

On the  basis of taking the volume,  mass ,  momentum,  and ene rgy  of the sur face  phase into a c -  
count, the s t ruc tu re  of the motive forces  of m a s s  t r a n s f e r  to the phase in te r face  (and f r o m  it 
into the c a r r i e r  phase) in c rys ta l l i za t ion  and solution is es tabl ished.  The c o r r e c t n e s s  of the 
re la t ions  obtained is ver i f ied  in two sys t ems .  

1. S t r u c t u r e  o f  D i s s i p a t i v e  F u n c t i o n  o f  a M u l t i p h a s e  M e d i u m  

i n  W h i c h  C r y s t a l l i z a t i o n  O c c u r s  

In accordance  with the concepts outlined in [1], a mult iphase medium is considered,  where  the f i r s t  (car -  
t i e r )  medium is a solution, the r - t h  is  c rys ta l s ,  of dimensions in the range ( r -  dr, r + d r ) ,  and the su r face  
phase is acr phase (the ~ phase is of volume V~, densi ty  pO, and t e m p e r a t u r e  T~). In the s teady case,  the inten-  
si ty of mass  t r a n s f e r  f r o m  the c a r r i e r  phase into the cr phase  and f r o m  the ~ phase  into the r - t h  phase  is the 
same.  In the most  genera l  case,  however ,  the fluxes through the sur face  phase  may be unequal; in other  words 

pof~.dr =/= J~fdr, 9~ ~ J~jdr. 

Let • = X-~ ,  J - - J t c r - J ~ l .  By means  of a d i scuss ion  analogous to that outlined in [1], the following equation 
tions a re  obtained in d i f ferent ia l  form:  mass  conserva t ion  of the c a r r i e r  phase  

R 

- -  f J~dr, (1) Op~ot @ di'v (ptv~) = - - .  
o 

m a s s  conserva t ion  of the component  in the c a r r i e r  phase  (in the in te res t s  of s impl ic i ty  of exposit ion, it is a s -  
sumed that  only one component takes  pa r t  in the phase  t ransi t ion)  

R 

d~c~i _ _  (ch~-- 1) S J[dr, (2) 

0 

the balance of number  of pa r t i c les  

0__~ _}_ div (fv2) + 0fn _ 0, (3) 
Ot Or 
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