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MATHEMATICAL MODELING OF THE HEAT-TRANSTFER
PROCESS AND SOLID PARTICLES IN A FLUIDIZED BED

V. A, Borodulya, Yu. S. Teplitskii, UDC 66.096.5
Yu. G. Epanov, Yu. E., Livshits,
and I. I. Yanovich

The authors formulate a two-concentration model of particle mixing in a fluidized bed, account-
ing for particle inertia.

In spite of the importance of knowing the laws for transfer of heat and particle mass in a fluidized bed,
this matter has not yet been satisfactorily resolved. Existing methods account for some of the real transport
properties of the system, but there is no model that describes at least the basic features of the bed and includes
the present methods of describing the mixing phenomenon as special cases. For example, the simplest diffusion
model [1] examines the particle transport process as a purely random diffusion one. The circulation mixing
method [2] singles out convective particle transport as the basic mechanism (upwards in the trails of the as-
cending gas bubbles, and downwards inthe remaining emulsion phase), and completely ignores the presence of
diffusion transport in the continuous bed phase. The one-concentration equation of convective diffusion formu-
lated in [3] takes account of both diffusion and circulation transport, and here to calculate the latter we need
detailed knowledge of the particle velocity distribution over time and system volume. This makes the model
extremely awkward for practical use. The circulation-diffusion two-concentration mixing method proposed
in [4] combines the good qualities of the diffusion and the circulation models. But even it is not free from the
common defect generally inherent in the diffusion parabolic equations, that it does not take account of the inertia
of the solid phase. As is well known {51, this leads to the paradox of infinitely large instantaneous velocity of
particle motion. Therefore, in [5] particle mixing was described by the hyperholic diffusion equations which,
however, do not account for the circulation mixing mechanism.

Thus, neither of the above models includes all the basic features of the mixing process, and therefore
does not satisfactorily describe the actual process over a wide range of variation of the experimental conditions.

In this paper the authors have tried to construct quite a universal model of the process, to describe both
diffusion and circulation transport, and the inertia of the solid phase.

Three basic mechanisms have been identified for mixing of particles and bubbles in fluidized beds (Fig. 1):
a) circulation (convective) transport of particles vertically;

b) turbulent diffusion of particles at finite speed in the descending dense phase;

c) horizontal exchange of particles between trails of gas bubbles and the descending dense phase.

The continuity equations for flux of labeled particles have the form

A

dey LA dw;cy

= Co — C4),
pw 2%, Blea—rcy)

A, V, Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 42, No. 2, pp. 251-259, February, 1982. Original
article submitted February 2, 1981,
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B i -+ B 00ty =B(c,—e)T. (w
dt 0x;

Here and below a repeated subscript indicates summation. Assuming, as in [4], that
wy=udn+w ¥, v=—wb,, q=Ci+c), c;=C40c)

and carrying out a standard time-average operation, we obtain

ac, ac, d(w e

A o + Auy T —A —ox, +B(C—Cy), o)
B 9 g, % _pic,—cy.
Ot dx, o

We note that the Reynolds condition is satisfied here (see [4, 5]).

In order to bring system (2) to the form of the diffusion equations and also to account for particle inertia,
we introduce the following analog of the Maxwell—Cattaniot relation:
ac, *<a<w;c;> AL ) 3)

wes—_p. L
(wier) Y ox K dt 1 91y

where T* is the relaxation time of the concentration field ¢;. The additional term —v*ud ¢ @; ¢} » /0%, (compared
withthe flux factor {W'ici'> used previously, see, e.g., [5]) in Eq. (3) accounts forthepresence of convective trans-

port (with velocity u,) of the labeled mixture in the space of the descending continuous phase.

Combining Eqs. (2) and (3) we obtain

ac ac _&C C T &C
Aﬁi U L A’CK___L. ! 2 * 1 = AD,—— 616 1 C——C X
Tor T4 e T e T i R v L
4)
9 Y 3C, ac, (
1 * * ; B —u i =pB(C;—C,).
X ( + p + Ty o, ) P o, B(Cy 2)

The equations of system (4) are a mathematical model for particle mixing in nonuniform fluidized beds.
Taking account of the large difference in the volume heat capacities of the gas and the particles (prf:pSCS ~
10~3%), we may assume that all the heat in the system is transferred by the moving particles. Thus, Eq. (4)
also describes the basic laws for internal heat transfer in the fluidized bed (in this case one must substitute:
Cy— ty; Co—ty; Dij—’313§ B —~a). One can also postulate that the condition Djj =aj; holds in nonuniform fluidized

beds.

For ™ =0 system (4) describes the circulation-diffusion mixing model [4], and for 7* =0 and Djj =0 it
describes the Van Deemter circulation model [2]. Putting ™ =0, uy = uy=0, 8 == (C;= C;=C) in Eq. (4), we
obtain the very simple diffusion model [1].

We now analyze the behavior of Eq. (4) at large time. Following the method of (2] we perform a Laplace
transformation of Eq. (4) for the case C;4(0, xi) =Cy(0, x1) =059 C4(0, x;)/97 =0:
You! _aCTi # o a2f " 0(_:—
Wttt gl T AT 2
THy2 02C, =
= (ADU — 6i151i) 'm;]— +B(C—C) (1 4= T p - Ty ai ) ,
1

_ (5)
0C,
0x4

BpCy—u =pC,—Co).

¥Strictly speaking, Eq. (1) is valid for the case when a small physical volume contains many bubbles. However,
to a first approximation one can consider such a volume to be the so-called elementary cell of the bed — one
bubble and the emulsion phase surrounding it. This is valid for stagnated layers, although this approach is
widely used, in fact, even for free fluidized systems in writing the equations for the various two-phase models
of the fluidized bed (see, e.g., [1, 2]).

+The influence of horizontal particle transfer devices at the top of the bed and in'the gas distribution device,
which involves local details, can be accounted for in the velocity fluctuation w{.
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Fig, 1, Scheme of the ftwo-
phase model of mixing of
particles and bubbles in a

e —————

120 T

Fig. 2. Comparison of the calculated (1-4)
and the experimental (5) temperature curves.
The staggered beam bundle has Sy X S, =60 X

fluidized bed, 60 mm; x,/I =0.85; ur=131 cm/sec; d=0.63
mm; t;=15°C; tc =65°C; diffusion model: 1)
ap =24.8 cm?/sec; 2) 14.2; 3) 7.1 (B* =0.0068
1/sec); diffusion model with finite particle
velocity: 4) ap =12.8 cm?/sec; T* =6.9 sec
(8* =0.0068 1/sec).
(w=4), T N .
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Fig. 3. Experimental data on velocities wf—-ui and v: a) glass beads (d=1.75
mm); b) quartz sand {d=0.63 mm); 1, 2) free layer; 3, 4) Sy X 8, =60% 60 mm (£g =
0.80); 5, 6) Sy X Sp=45%X 45 mm (€5 =0.65); 7, 8) Sy X S, =60X 60 mm (€5 =0.80).
1, 3,5, 7 (w¥-u1); 2, 4, 6, 8) v; 3-6) staggered bundle; 7, 8) corridor type; wh—uy),
v in cm/sec; t, °C; T, sec; up/e a—u, cm/sec.

TFrom the second equation of Eq. (5) we express 61 in terms of 62 and 862/ 0x4, and substitute this info the first
equation of the system (5). Retaining only terms linear inp (as 7 —«, p—~ 0 [6]), we obtain

A+ B) o (aDr o # 55 ) G _( RS S S
( + ) Pls (AD;; + ﬁ 6;161] axidx,- ADLJ Y| 61161] ﬁ aXiaxiaxj . (6)
The equations for C; and for the transform of the mean concentration C = —é%—__t—gcz are identical to Eq. (6).

Taking into account that the direction of the gas stream coincides with the axis 0x; we can regard the axes
0xy; 0x,; 0x3 as the principal axes of the tensor Dij [5]. Assuming this and going back to the original C, we
represent Eq. (6) in the form

_oC [ ADy;
ot | A+ 8B

u GZC_@
B oo

7)

-+

f-azc_[

AD” T*UZGH
0x?

uz(‘S“ _
ﬁ(A+B)} A+ B~ A(A+B)

Thus, in general, even for large 7, system (4) does not transform into the very simple diffusion equation,
but goes back to a third-order equation of the type of Eq. (7). Equation (7) reduces to a very simple parabolic
diffusion equation
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oC - { ADy + u? 1 o0C + ADy, o*C + iD33 0°C (8)
ot A+ B ﬁ(A+B)J 0x} AL B 0% A+ B 01

withu/BH<1,T The expression in the square brackets in Eq. (8) is that generally used in the [1] for the ef-
fective coefficient of vertical diffusion of particles K.I One of the terms Dy, =AD;;/ (A +B) is the coefficient of
vertical turbulent diffusion of particles; the second term Kg =u?/8 (A + B) is 'che coefficient of axial "Taylor"
diffusion, found, as is known [8], in systems with a uniform field of axial velocities {uy, u,) and transfer of
material in the radial direction (8). In circular and square beds it is permissible to take Dyy = D33, The ex-
pression ADp,/(A+B) = Dy, is the effective coefficient of horizontal diffusion of particles.

1t can be seen from Eq. (7) that the steady-state distribution of concentrations can be calculated from one
of the two equations:

1) the vertical mixing:

x FC [ ADy __ wwr ] e (9)
de | A+B AA+B | p dg
2) the horizontal mixing:
@C
L o, (10)
dx;

where the vertical concentration profile is determined, apart from coefficients of the third order of (9), like
the diffusion flux, and can differ appreciably from linearity (horizontal mixing).

We now investigate the behavior of system {(4) as the intensity of heat transfer between the phases varies.

a) B =0, phases A and B are isolated. For the horizontal mixing case (C;= Ci{f, x5); Co =Cyt, x5)) Eq. (4)
has the form

2
0C, - 0°C, —D,, 0%C, . 9C, —0. (11)

ot ox o 0x2 dt

The first equation in (11) describes diffusion with finite velocity v, =V Dy,/T* in the positive and negative direc-
tions of the 0x, axis. For vertical mixing (C;=Cy(t, xq); Cy=Cy(t, x1)) from Eq. (4) we obtain
ac, ac, 3C, *C, *C, = aC, s _, 12)

U T* F 2 ue* = — 7# :
ot T %, ™ oz | 0% 7 ox? ot © ox,

In the coordinate system moving relative to the 0x; axis with velocity u; Eq. (12) takes the form (xj =xq~uyT)

(12a)

=ty

o o2 ax;

dC, 1 0%C, D 62C1.

Therefore, the first equation of (12) describes convective diffusion with finite velocity wO =uy +V Dyy/7* in the
positive 0x axis direction; and with w§ =—uy +V Dy;/7* in the negative direction.

b) B8 ==, the phases A and B are physically indistinguishable (C;= C,=C and the system is single-phase).
Expressing C; from the second equation of (4) and substituting it into the first equation of (4) for the case 8 =,
we obtain

ac &  AD, &C

* = — 13
7 'Y om TALB om s}
for the horizontal mixing, and
oc . 0°C o%C ADy, 02C
UyTF = (14)
ot T on® i 010x4 AL+ B 0x?

TThis condition is fulfilled at least in high stagnated beds.
1The quantity K= Dy, +u®/B (A + B) is not the coefficient of turbulent diffusion in the strict sense, and is therefore
usually called the coefﬁment of vertical dispersion [7].
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/
for the vertical mixing. The velocities and reverse waves determined by Eq. (13) are: v, ]/ (A - B)r =

A
l/—m* vy (v,is the wave velocity for § =0). The diffusion coefficient is equal to the effective horizontal
diffusion coefficient Dy =ADy,/ (A + B).
The characteristics of Eq. (14) [9] have the form:

AD,, 1, 1
xl—[ m‘i"r%‘rT uiJ T = const, , 15)

/S AD I . 1
x1+[l/ (A+B1;'|: ‘:‘TU%‘“T%]T:COTLSQ,

and therefore, the velocity of the forward wave determined by Eq. (14) is wi = V ADy /A + B) v*+u2/4+4-u,/2
and that of the reverse wave is @I =V AD,(A+B)v*+u2/d—u/2. Tt is clear that the propagation velocity of
the forward and reverse diffusion wave fronts horizontally for arbitrary § is v=¢ (8)v,, where vV A/(A +B)=

o (B)= 1; @ (0)=1; @(=) =VA/(A+B). The forward wave velocity wiin the descending continuous phase for
arbitrary 8 is wi=y (ﬁ)wg, where [V AD /(A4 By v+ u?/4 - u /21wy + v Dy/tH )<<y B)<L; 9(0)=1; ¥()=w /wg
The reverse wave velocity wT in this same phase varies in the range W%‘ to wf; with variation of from 0 to =,
The particle velocity in the bubble trail phase (the reverse wave velocity) is evidently equal to uy, and thus, in
the system with arbitrary 8 there are one forward wave and two reverse waves.t In actual fluidized systems
A/(A +B) varies only very slightly: 0.8 <A /(A+B)<1, It can easily be seen that here ¢ (B) varies in the range
0.9<p(B)=1.

The function [V ADy/ (A +B)7T* +uj/4 +1y/2)/ (wy +V Dy /7%) depends weakly onwy, Dyy/ 7% and A/ (A +B),
and here¥(B) varies in the range: 0,77 <¥(B) =1. For the ratio wi/v we obtain

f *
@ ‘ . D11 +u f‘/ ;) (16)
22

U

with an error not exceeding 16%. From Eq. (16), knowing 7* , Dy, uy, and wi/v we can evaluate Dy;. The ratio
between the coefficients Dy; and Doy can be found from the following approximate equality:
Dy _ Dy ( wl—u )2 (162)

D, D, v

which follows from Eq. {(16).

An experimental determination of w! and v was conducted in a rectangular facility of section 40X 25 cm,
As disperse materials we used glass beads (d=1.75 mm; u,=63 cm/sec) and quartz sand (d=0.63 mm; 1y =20
cm/sec). In determining wf we used the method of an instantaneous planar heat source [10]. For a detailed
description of the tests see [11]. The quantity wi was found fromthe relation

= lx/Td, (17)

where Iy is the distance from the top of the bed (the place where the hot particles are introduced) to the point
where the bed temperature changes; and 7,is the delay time of the response function (Fig. 2). An analogous
method was used to determine v under horizontal mixing conditions, Here a heat pulse of finite width was created
(Ip=6 cm) by the method of [12] on the left~hand wall of the equipment. The velocity v was determined from:

0 = (I — lo)/Ty- as)
The measurement thermocouple was located at a distance Zy from the left-hand wall of the column.

In the work we studied both free beds and beds stagnated by means of horizontal tube bundles. Two types
of staggered and straight-line bundles were used: Sy X Sp=45x% 45 mm, 60X 60 mm and Sy X8 =60x 60 mm.

fFor w' <0 in the system there are two forward waves (wf, ~wT) and one reverse wave (~u,). It is evident that
because of interphase transfer these three waves will be present in both phases.



Preliminary tests showed that w! and v do not depend on Hy, and therefore the basic series of experiments was
carried out in beds with H;=25-27 em. The results obtained are shown in Fig. 3, from which, taking account
of Eq. (16a) (the values of u; were taken from [11]), it can be seen that in the free beds of both the disperse
materials Dyy is practically equal to Dyy. An analogous situation occurs in the stagnated beds of glass beads in
the straight line and staggered bundles (Sy X Sk =45 x 46 mm) (Fig. 3a). Inthe quartz sandbeds Dyy= (1-4)Dyy in all
the bundles. Here we can see a clear tendency for Dy and Dy, to become close with increase in the filtration
velocity (Fig. 3b). It is evident that the ratio of Dyy and Dy, is greatly influenced by processes of coalescence of
bubbles and ejection of particles in the horizontal direction at the top of the bed and at the gas distribution
device. As can be seen from Fig. 3, the contributions of these processes to the intensity of particle mixing in
free beds is roughly the same, and they have a tendency to become close with increase of filtration velocity in
stagnated beds.

Figure 2 shows a typical result of processing the experimental curves (5) according to the various models.
Brokenlines 1-3 showthe system response functions to a heat pulse for the case of horizontal mixing of heated
particles, calculated according to the solution [13] of the parabolic heat-conduction eguation with boundary con-
ditions corresponding to those created experimentally:

ot 0% "
P =Gy -a}g‘—ﬁ* (t—to),

(19)
fc’ 0<x2<lﬁ; i:O’ XZZO, l,
by, h<<r<! 0x,

1{0, x) =
where g* is determined from the test response function from regular regime conditions [8] with T > 7 5.
This parameter describes the heat flux from the bed to the tube bundle and to the air bheing filtered. It can be
seen that the theoretical curves do not describe the actual heat-transfer process to the bed over the whole
range of variation of time and, of course, do not contain 1q. The model constructed above allows this to be
done. Using the analogy noted earlier between transport of labeled particles and heat in nonuniform fluidized
beds, from system (4) we can obtain equations describing the horizontal internal heat transfer in the system:

ot . o &t .
A 6; + At* Bri :Aazgha—ng+[a(tz—fi)_Aﬁ‘(ti—to)]Xv
x(“r'f* d ); B I gty — 1) — BR* (ta—to). 20)
T T

Tt was shown in [4] that the two-temperature system (20) with 7 =0; 8* =0; al?a, >>10 converts to the one-
temperature equation (19) (for 8*=0) with a, =Aag/(A+B). Therefore, for @/?/a,>10 (this usually holds in
circular facilities (4]}, Eq. (20) will take the form {eliminating one of the temperatures from Eq. (20) and putting
ty =ty =t when a— «)
2. 2
o . &t

== (I, 5
ot 012 h 0x3

—ﬁ%(t'—zo)(wr* ) 1)
dt
Allowing for the measured values % =0.002-0.009 1/sec and T =1-5 sec, Eq. (21) is simplified, and together

with the required boundary conditions takes the form

ot . o2t . _
ot g~ oy P
j=—a ot —r*izo, Xe =0, Iy
0%, ot
(0, x) = [fer OS<h, SO X _q (22)
, Lo, Lh<<xa<C1 o7

System (22) was used for numerical calculations of the temperature profiles, and here it was replaced by the
equivalent system of equations
ot aj . . . 0j @3)
=— — Pt —to); =—ua g
v 0%, Brt—ta)s 1 b %, v

and the boundary conditions
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I(O x)_ tca 0<x2<10.
’ 2“{to,lo<x2<1,
i 0=t =0,

i, %) =0

Equations (23) were approximated by the fully conservative difference scheme [14] which was implemented
numerically by a marching method [15] on a BESM-6 computer (the step sizes in the dimensionless coordinate
x5/l and in dimensionless time apT /1% were 0.001 and 0.00001, respectively). The response function, calculated
from Eq. (23), is also shown in Fig. 2 (4), from which it can clearly be seen that curve 4 describes the observed
dependence over all the range of variation of 7 significantly better than do the functions 1-3 obtained from Eq.
(19). This proves the importance of allowing for the inertia of the solid particles in describing transfer of
particles and heat over the volume of a fluidized bed.

NOTATION

a;;, tensor for the bed diffusivity coefficients; ap =Aayy : (A +B), effective coefficient of horizontal dif-
fusivity ofthebed; A=1— g, ~ ay &, fractional volume of bed occupied by the descending continuum phase; B = @y€y,
fractional volume of the bed occupied by bubble trails; Cg, Ct, heat capacity of the solid particles and the gas;
¢y, Cy9, mass of the labeled solid material arriving in unit volume of the emulsion phase in the descending con~
tinuum phase and in the bubble wakes, respectively; cy, cé, fluctuations in ¢y and ¢y; Cy and C,, mean values of
¢y and cy; d, particle diameter; Djj, tensor introduced in Eq. (3); Dp =ADyy/ (A +B), effective coefficient of

ADy; u
“A+ B T B@AtE)
vertical particle dispersion; p, Laplace parameter; Q, heat flux density; I,, I, width of the heated chamber and
of the equipment, respectively; Sy, Sy, vertical and horizontal pitch of the tubes; ty and t,, temperature of the
solid particles in the emulsion phase and in the bubble trails, respectively; t=(At; +Bty)/(A +B); t;, te, initial
bed temperature and heated chamber temperature; uy, uy, velocity of the descending emulsion phase and of the
bubble trails, respectively; Auy =Buy =u, circulation velocity of the particles referred to the total section of the
equipment; uy, filtration velocity; u,, velocity at the start of fluidization; wj, vi, velocities of the particles in
the emulsion phase and in the bubble trails; w{, fluctuations in the quantity wi; x4, Xy, X3, vertical and horizontal
coordinates; &y, fractional volume of the trail (referred to the gas bubble volume); @*, coefficient of heat
transfer between the descending continuum phase and the bubble trails, referenced to unit volume of bed; @ =
a*/p Cg; B, volume of solid particles and gas between them (per unit time and unit bed volume) transferred
between the descending continuum phase and the solid particles in the bubble trails; 8%, coefficient introduced
into Eq. (19); ;;, Kronecker delta; €, concentration of bubbles in the bed; €,, porosity of the adapter; PE Ps,
densities of the gas and the particles; p, density of the fluidized bed; T, time; T* , relaxation time introduced
into Eq. (3); 74, delay time; 7 time to reach the temperature maximum.

coefficient of

horizontal particle diffusion; Hy, H, initial and ambient bed height; j =Q/ pCg; &

max:
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THERMODYNAMIC ANALYSIS OF MASS-TRANSFER MOTIVE
FORCES IN THE COURSE OF CRYSTALLIZATION
FROM SOLUTIONS

V. V. Kafarov, I, N. Dorokhov, UDC 532.529.5 :66.065.5
and E. M. Kol'tsova

Onthe basis of taking the volume, mass, momentum, and energy of the surface phase into ac-
count, the structure of the motive forces of mass transfer to the phase interface (and from it
into the carrier phase) in crystallization and solution is established. The correctness of the

relations obtained is verified in two systems.

1. Structure of Dissipative Function of a Multiphase Medium

in Which Crystallization Occurs

Tn accordance with the concepts outlined in [1], 2 multiphase medium is considered, where the first (car-
rier) medium is a solution, the r-th is crystals, of dimensions in the range (r —dr, r-+dr), and the surface
phase is a o phase (the o phase is of volume V¢, density pg, and temperature T;). In the steady case, the inten-
sity of mass transfer from the carrier phase into the o phase and from the ¢ phase into the r-th phase is the
same. In the most general case, however, the fluxes through the surface phase may be unequal; in other words

pgf}\'dr —7_& Jio'idr’ ¥ Qfgar 7é Jdifdr

Let n =A—&, J=J15,—J51. By means of a discussion analogous to that outlined in [1], the following equation

tions are obtained in differential form: mass conservation of the carrier phase ~
, R
iv (pyvy) = — f Ifdr, 1)

i

mass conservation of the component in the carrier phase (in the interests of simplicity of exposition, it is as-
sumed that only one component takes part in the phase transition)

dic“ = (=1 5 Jjdr, @)

the balance of number of particles
of . ofn
—L + div — —, 3)
Y + (fve) + or
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